Растения произрастающие в условиях повышенного увлажнения




1. Вымирающий вид.

А. Находящийся под угрозой полного вымирания вид, численность сохранившихся особей которого недостаточна для самоподдержания популяции в естественных условиях.

2. Эксплуатируемый вид

Б. Вид, морфологические и/или поведенческие особенности которого не соответствут современным условиям жизни.

3. Эндемичный вид.

В. Вид, обитающий только в данном регионе и не живущий в других

4. Исчезающий вид

Г. Вид, морфологические и/или поведенческие особенности которого включают его представителей в хозяйственный оборот.


Источник: xn--j1ahfl.xn--p1ai

Экологические группы растений по отношению к свету.

Свет имеет в жизни растений очень большое значение. Прежде всего, он является необходимым условием фотосинтеза, в процессе которого растения связывают световую энергию и за счет этой энергии осуществляют синтез органических веществ из углекислого газа и воды. Свет оказывает также влияние на ряд других жизненных функций растений: прорастание семян, рост, развитие репродуктивных органов, транспирацию и др. Кроме того, с изменением условий освещения изменяются некоторые другие факторы, например температура воздуха и почвы, их влажность, и, таким образом, свет оказывает на растения не только прямое, но и косвенное воздействие.

Количество и качество света в местообитаниях изменяются в зависимости от географических факторов (географической широты и высоты над уровнем моря), а также под влиянием местных факторов (рельефа и затенения, создаваемого совместно произрастающими растениями). Поэтому в процессе эволюции образовались виды растений, нуждающиеся в разных условиях освещения. Обычно выделяют три экологические группы растений:

  • 1) гелиофиты – светолюбивые растения;
  • 2) сциогелиофиты – теневыносливые растения;
  • 3) сциофиты – тенелюбивые растения.

Гелиофиты, или светолюбивые растения, – это растения открытых (незатененных) местообитаний. Они встречаются во всех природных зонах Земли. Гелиофитами являются, например, многие виды растений верхних ярусов степей, лугов и лесов, наскальные мхи и лишайники, многие виды разреженной пустынной, тундровой и высокогорной растительности.

Побеги светолюбивых растений довольно толстые, с хорошо развитой ксилемой и механической тканью. Междоузлия укорочены, типично значительное ветвление, в результате чего нередко возникает розеточность и образование формы роста типа “подушка”.

Листья гелиофитов в целом имеют более мелкие размеры и располагаются в пространстве так, что в самые яркие полуденные часы солнечные лучи как бы “скользят” по листовой пластинке и меньше усваиваются, а в утренние и вечерние часы падают на ее плоскость, используясь максимально.

Анатомические особенности строения листа у гелиофитов также направлены на уменьшение поглощения света. Так, листовые пластинки многих светолюбивых растений имеют специфическую поверхность: либо блестящую, либо покрытую восковым налетом, либо густо опушенную светлыми волосками. Во всех этих случаях листовые пластинки способны отражать значительную часть солнечного света. Кроме того, у гелиофитов хорошо развиты эпидерма и кутикула, которые сильно затрудняют проникновение света в мезофилл листа. Установлено, что эпидерма светолюбивых растений пропускает не более 15% падающего света.


Мезофилл листа имеет плотное строение за счет сильного развития палисадной паренхимы, образующейся как у верхней, так и у нижней стороны листа (рис. 15.6).

Хлоропласты у гелиофитов мелкие, они густо наполняют клетку, частично затеняя друг друга. В составе хлорофилла преобладает более светоустойчивая форма “а” над формой “в” (а/в = 4.5-5.5). Общее содержание хлорофилла невысокое – 1.5-3 мг на 1 г сухой навески листа. Поэтому листья гелиофитов обычно имеют светло-зеленую окраску.

Сциогелиофитами называют теневыносливые растения, которые обладают высокой пластичностью по отношению к свету и могут нормально развиваться как при полном освещении, так и в условиях более или менее выраженного затенения. К теневыносливым растениям относятся большинство лесных растений, многие луговые травы и небольшое число степных, тундровых и некоторых других растений.

Сциофиты нормально растут и развиваются в условиях слабого освещения, отрицательно реагируя на прямой солнечный свет. Поэтому их по праву можно назвать тенелюбивыми растениями. К этой экологической группе относятся растения нижних ярусов густых тенистых лесов и густотравных лугов, погруженные в воду растения, немногочисленные обитатели пещер.

Приспособления тенелюбов к свету во многом противоположны адаптациям светолюбивых растений.
стья сциофитов в целом более крупные и более тонкие, чем у гелиофитов, в пространстве они ориентируются так, чтобы получить максимум света. Для них характерно отсутствие или слабое развитие кутикулы, отсутствие опушения и воскового налета. Поэтому свет проникает в лист сравнительно легко – эпидерма тенелюбов пропускает до 98% падающего света. Мезофилл рыхлый, крупноклеточный, не дифференцирован (или слабо дифференцирован) на столбчатую и губчатую паренхиму (рис. 15.4).

Хлоропласты у тенелюбов крупные, но их мало в клетке, и поэтому они не затеняют друг друга. Отношение содержания форм хлорофилла “а” и “в” снижается (а/в = 2.0-2.5). Общее содержание хлорофилла довольно велико – до 7-8 мг/1 г листа. Поэтому листья сциофитов имеют, как правило, темно-зеленую окраску.

У водных тенелюбов хорошо выражено адаптивное изменение состава фотосинтезирующих пигментов в зависимости от глубины обитания, а именно: у высших водных растений и у зеленых водорослей, обитающих в верхнем слое воды, преобладают хлорофиллы, у цианобактерий (синезеленых водорослей) к хлорофиллу прибавляется фикоцианин, у бурых водорослей – фукоксантин, у самых глубоководных красных водорослей – фикоэритрин.

Своеобразным типом физиологической адаптации некоторых тенелюбов к недостатку света является утрата способности к фотосинтезу и переход к гетеротрофному питанию. Это растения – симбиотрофы (микотрофы), получающие органические вещества с помощью грибов-симбионтов (подъельник (Hypopitys monotropa) из семейства вертляницевых, ладьян (Corallorhiza), гнездовка (Neottia), надбородник (Epipogium) из семейства орхидных).
беги этих растений теряют зеленую окраску, листья редуцируются и превращаются в бесцветные чешуи. Корневая система приобретает своеобразную форму: под влиянием гриба рост корней в длину ограничивается, зато они разрастаются в толщину (рис. 15.9).

 

Рис. 15.9. Растения – микотрофы: 1 - корни ладьяна трехнадрезного (Corallorhiza trifida); 2 - гнездовка настоящая (Neottia nidus-avis); 3 - подъельник обыкновенный (Hypopitys monotropa).

Рис. 15.9. Растения – микотрофы: 1 – корни ладьяна трехнадрезного (Corallorhiza trifida); 2 – гнездовка настоящая (Neottia nidus-avis); 3 – подъельник обыкновенный (Hypopitys monotropa).

Растения – паразиты других высших растений многочисленны в нижних ярусах густых влажнотропических лесов. Классическим примером является раффлезия Арнольда (Rafflesia arnoldii), которая не имеет ни корней, ни листьев. Внутри растения-хозяина развиваются присоски-гаустории, а снаружи формируется огромный цветок, достигающий в диаметре 1 м и весящий 4- 6 кг. Встречаются паразиты и среди растений умеренных широт (виды заразихи (Orobanche), петров крест (Lathraea squamaria), повилика (Cuscuta)). Они полностью утрачивают зеленую окраску; стебли и листья их крайне редуцированы; вместо корней формируются присоски-гаустории, внедряющиеся в ткани растения-хозяина и соединяющиеся с его проводящей системой.


Кроме настоящих паразитов, полностью утративших способность к фотосинтезу, встречаются разнообразные формы полупаразитов. Полупаразиты сохраняют нормальные зеленые облиственные побеги, а от растения-хозяина получают, главным образом, воду и минеральные вещества: у них вместо мелких сосущих корней образуются присоски, внедряющиеся в ткани корней или ветвей растения-хозяина. К полупаразитам принадлежит широко распространенный в Западной Европе кустарничек омела (Viscum album), поселяющаяся в кронах деревьев, а также многие луговые растения из семейства норичниковых (погремок (Rhinanthus), марьянник (Melampyrum), очанка (Euphrasia)) (рис. 15.10).

 

Растения-полупаразиты: 1 – омела (Viscum album), нижняя часть растения; видны видоизмененные корни под корой растения-хозяина; 2 – продольный разрез ветви растения-хозяина; видны присоски на корнях омелы; 3 – марьянник полевой (Melampyrum arvense), паразитирующий на луговых злаках.


Рис. 15.10. Растения-полупаразиты: 1 – омела (Viscum album), нижняя часть растения; видны видоизмененные корни под корой растения-хозяина; 2 – продольный разрез ветви растения-хозяина; видны присоски на корнях омелы; 3 – марьянник полевой (Melampyrum arvense), паразитирующий на луговых злаках.

 

В условиях глубокого затенения нижних ярусов влажнотропических лесов выработались особые жизненные формы растений, выносящих в конечном счете основную массу побегов, вегетативных и цветоносных, в верхние ярусы, к свету. Это удается благодаря специфическим способам роста. Сюда относятся лианы и эпифиты.

Лианы выбираются на свет, используя как опору соседние растения, скалы и другие твердые предметы. Поэтому их еще называют лазящими растениями в широком смысле. Лианы могут быть древесными и травянистыми и наиболее характерны для влажнотропических лесов. В умеренной зоне их больше всего во влажных ольшаниках по берегам водоемов; это почти исключительно травы, такие как хмель (Humulus lupulus), калистегия (Calystegia), ясменник (Asperula) и т. д. В лесах Кавказа встречается довольно много деревянистых лиан (сассапариль (Smilax), обвойник (Periploca), ежевики). На Дальнем Востоке они представлены лимонником китайским (Schisandra chinensis), актинидией (Actinidia), виноградом (Vitis).


Специфика роста лиан состоит в том, что сначала их стебли растут очень быстро, а листья отстают и остаются несколько недоразвитыми. Когда же, использовав опору, растение выносит верхние побеги на свет, там развиваются нормальные зеленые листья и соцветия. Анатомическая структура стеблей лиан резко отличается от типичной структуры прямостоячих стеблей и отражает специфику стебля, наиболее гибкого даже при значительном одревеснении (у древесных лиан). В частности, стебли лиан обычно имеют пучковое строение и широкие паренхимные лучи между пучками.

Эпифиты – это особая жизненная форма растений, встречающаяся преимущественно во влажнотропических лесах. Чаще всего это травянистые растения, которые поселяются на стволах и ветвях других видов, но не являются паразитами по отношению к ним, а лишь “снимают квартиру” высоко над землей, в условиях более благоприятного освещения. Естественно, что это возможно лишь при очень высокой влажности воздуха. Воздушные корни многих эпифитов поглощают водяные пары с помощью специальной всасывающей ткани – веламена (см. раздел 4). Сначала маленькое растение, выросшее на чужой ветви из семени, практически может жить только за счет воздушного питания. Позднее около него накапливается некоторое количество опада, мусора, и создается собственная “почва”, чему способствуют у некоторых эпифитов специализированные листья, плотно прижатые к субстрату, например у папоротника олений рог (Platycerium).

Интересную жизненную форму представляют также эфемеры и эфемероиды листопадных лесов, например кандык сибирский (Erythronium sibiricum), прострел раскрытый (Pulsatilla patens), горицвет весенний (Adonis vernalis), ветреница лесная (Anemone sylvestris), медуница мягчайшая (Pulmonaria dacica). Все они являются светолюбивыми растениями и могут произрастать в нижних ярусах леса только благодаря тому, что сдвигают свой короткий вегетационный период на весну и начало лета, когда листва на деревьях еще не успевает распуститься, и освещенность у поверхности почвы оказывается высокой. Ко времени полного распускания листьев в кронах деревьев и появления затенения они успевают отцвести и образовать плоды.

Источник: farmf.ru

Переувлажнение наблюдается при заболачивании почв, затяжных дождях, в результате весеннего таяния снега, при нарушении поливных норм на орошаемых территориях.

Избыток влаги оказывает крайне неблагоприятное влияние на растения. В этих условиях появление всходов затруднено; растения угнетаются из-за образования корки на поверхности почвы; оголяется узел кущения у злаков; опыление из-за туманов и дождей плохое, поэтому мало образуется завязей; а нередко наблюдается осыпание завязей и незрелых плодов; происходит загнивание корнеклубнеплодов, плодов овощных культур; переувлажнение валков при раздельной уборке вызывает прорастание зерна в валках, а у культур с коротким периодом покоя или его отсутствием — прорастание семян на корню. После затяжных дождей наблюдается растрескивание плодов у томатов, ягодных культур, корнеплодов; у подсолнечника загнивает тыльная часть корзинки. Наблюдается полегание посевов, особенно высокорослых сортов или на участках с усиленным азотным питанием. Нередко на склонах наблюдается смыв растений дождевыми потоками, а на пониженных участках рельефа возможно вымокание растений из-за застоя воды.

Если сильные дожди сопровождаются градом, то растения повреждаются травматически, иногда до полного уничтожения посевов.

Одна из основных причин угнетения растений при избыточном увлажнении почвы состоит в нарушении воздушного режима в зоне корней. При оптимальной обеспеченности водой почва содержит достаточное количество кислорода. Но при затоплении воздух из пор вытесняется водой.

Растения страдают от недостатка кислорода (гипоксия) или его полного отсутствия (аноксия). В условиях кислородной недостаточности часто оказываются озимые, ячмень, соя, рис, хлопчатник.

Кислород необходим как для дыхания корней, так и для жизнедеятельности аэробных микроорганизмов. При длительном затоплении в почве развиваются анаэробные процессы: спиртовое, маслянокислое и другие виды брожения. Происходит подкисление почвы в ризосфере, накапливаются углекислый газ, метан, органические кислоты, спирты и другие соединения. Многие из этих соединений ядовиты для корней растений, их называют болотными токсинами. В таких условиях корни начинают загнивать и отмирать, что приводит к гибели растений.

Нарушение аэробного дыхания в клетках корней сопряжено с прекращением транспорта электронов и окислительного фосфорилирования, прерываются реакции цикла трикарбоновых кислот. В этих условиях окисление углеводов в клетках переключается на путь спиртового или молочнокислого брожения. В результате в условиях аноксии образование АТФ происходит только на этапе гликолиза, а цикл трикарбоновых кислот полностью выключается. Поэтому из каждой молекулы глюкозы образуется только 2 молекулы АТФ (при нормальном снабжении кислородом и аэробном дыхании образуется 36 молекул АТФ). В итоге растения испытывают недостаток энергии для сохранения процессов метаболизма, роста и развития.

В процессе брожения в клетках накапливаются продукты брожения — молочная кислота и этиловый спирт. Спирт ядовит для клеток, а органические кислоты вызывают подкисление цитоплазмы и увеличение проницаемости клеточных мембран. В результате через мембраны из клеток выходят водорастворимые вещества. Значительная аккумуляция молочной кислоты при остром дефиците кислорода вызывает клеточный ацидоз и гибель клеток.

В связи с угнетением дыхания резко снижается поглотительная активность корней, так как поглощение питательных веществ требует затраты энергии, поставляемой в форме АТФ процессом дыхания. Наблюдается задержка роста растений. Недостаточно эффективное поглощение корнями минеральных элементов и их слабый транспорт в побеги сопровождается усиленной реутилизацией азота, фосфора и других элементов из более старых листьев в более молодые. Следствием этого является быстрое старение и гибель закончивших рост листьев.

Надземные органы растений не испытывают недостатка кислорода, а влияние затопления на них осуществляется опосредовано через нарушение трофических связей с корневой системой. Это определяется нарушением поступления из корневой системы в надземные органы элементов минерального питания и физиологически активных веществ.

Отрицательное влияние высокой влажности почвы и воздуха на процесс формирования урожайности сельскохозяйственных растений проявляется также в ухудшении условий для созревания семян. На завершающем этапе онтогенеза происходит обезвоживание семян. Затяжные дожди в предуборочный и уборочный периоды ухудшают условия для высыхания зерна и вызывают прорастание его в валках или на корню. Это происходит в результате биохимического распада веществ зерна и, в первую очередь, гидролиза крахмала до более простых соединений — сахаров под влиянием амилолитических ферментов. При сильном прорастании может начаться также распад клейковинных белков и липидов. Прорастание семян на корню или в валках нередко отмечается во влажные годы у ржи, пшеницы, тритикале, гороха, гречихи и других культур. Прорастание зерна резко ухудшает хлебопекарные свойства ржи и пшеницы: хлеб получается малого объема, мякиш плотный, липкий, легко заминается, цвет корки белесый с сильными подрывами.

Сельскохозяйственные растения в большинстве плохо переносят затопление. К наиболее чувствительным к кислородному дефициту относятся горох, томаты, соя; к относительно устойчивым — кукуруза, пшеница, овес, картофель. Самыми устойчивыми являются растения водные и влажных (заболоченных) местообитаний. Из растений сельскохозяйственного назначения к ним относятся рис и сахарный тростник.

У устойчивых растений в процессе эволюции сформированы разнообразные морфологические, анатомические приспособления и биохимические механизмы, которые позволяют им выживать при дефиците кислорода. Основная особенность таких растений — это наличие аэренхимы — основной ткани, содержащей очень крупные межклетники. Межклетники и воздушные полости в корнях, стеблях и черешках листьев сообщаются между собой и служат резервуаром для кислорода, необходимого для дыхания всех тканей.

У риса затопление вызывает удлинение клеток междоузлий, поэтому рост всего стебля ускоряется и верхняя часть его всегда находится над водой. Первичная кора корня и стебля дифференцируется в аэренхиму. По ее межклетникам происходит поступление кислорода во все ткани. Днем, когда идет фотосинтез, содержание кислорода в воздушных полостях листьев всегда больше, чем в атмосфере. Отсюда он поступает в воздушные полости корней, поддерживая условия для аэробного дыхания. Однако в условиях затопления аэробное дыхание не вполне достаточное, чтобы обеспечить энергией все процессы жизнедеятельности растения, поэтому активируется процесс гликолиза. Некоторая часть кислорода выходит из корня в почву и участвует в окислении токсичных веществ. Наличие аэренхимы у риса является конститутивным признаком, а бескислородные условия вызывают еще более сильное развитие этой ткани.

Выживаемость растений сахарного тростника при затоплении определяется также способностью образовывать придаточные корни на узлах, расположенных выше уровня воды.

У растений-мезофитов аэренхима при нормальных условиях обеспеченности кислородом отсутствует, но может формироваться в ответ на недостаток кислорода в основании стебля и в корнях. Формирование этой ткани регулируется этиленом. В образовании этилена участвуют ферменты аминоциклопропанкарбосинтаза (АЦК-синтаза) и АЦК-оксидаза. Эти ферменты синтезируется в кончиках корней в ответ на дефицит кислорода. Синтезируются ферменты, связанные с лизисом клеточных стенок и образованием аэренхимы. В результате происходит гибель клеток первичной коры корня и стебля, а в местах гибели остаются полости, которые используются как резервуары для кислорода, поступающего в них из надземных органов. В образовании этой ткани участвуют также ионы кальция.

Формирование аэренхимы часто бывает недостаточным для нормальной жизнедеятельности растений в условиях затопления, поэтому большое значение имеют физиолого-биохимические приспособления, которые обеспечивают достаточную активность обмена веществ в условиях пониженной концентрации кислорода. Эти приспособления связаны в основном с процессом дыхания — его путями.

В условиях дефицита кислорода повышается активность пентозофосфатного пути дыхания с последующим окислением в митохондриях образующегося НАДФН и сопряженного образования АТФ. Увеличивается значение гликолитического пути распада глюкозы. Возрастает значение системы детоксикации продуктов анаэробного распада (этилового спирта, молочной кислоты) путем удаления этих веществ или включения в обмен веществ. Нередко устойчивые к кислородному дефициту растения не накапливают продукты брожения. В этом случае образующиеся продукты брожения могут выходить из корней в почву или подниматься с транспирационным током в надземную часть, а затем удаляться через листья или чечевички побегов.

Образующийся этиловый спирт может разрушаться с участием фермента алкогольдегидрогеназы. Опытами установлено, что активность этого фермента в анаэробных условиях повышается. Нейтрализация конечных продуктов брожения вызывает усиление процесса гликолиза.

Аноксия вызывает образование новых белков и ферментов. В частности обнаруживаются новые изоферменты, участвующие в гликолизе. Они поддерживают более надежное функционирование гликолиза в изменившихся условиях и снабжение растений энергией при подавлении аэробного дыхания. Изоферменты различаются между собой по физико-химическим свойствам, но катализируют одну и ту же реакцию.

К физиолого-биохимическим приспособлениям у растений к недостатку кислорода относится способность их использовать в качестве конечного акцептора электронов не кислорода (как при аэробном дыхании), а других соединений, например нитратов или соединений, имеющих двойные связи — жирных кислот, каротиноидов. Процесс переноса электронов и протонов на NO3- получил названия нитратного дыхания.

Таким образом, у растений, произрастающих в условиях переувлажнения, устойчивость к гипоксии и аноксии достигается широким комплексом приспособлений.

Под влиянием избыточного увлажнения у полевых культур особенно высокорослых сортов нередко наблюдается полегание растений. Это вызывает большие неудобства для возделывания растений и при их уборке. Особенно большими потерями сопровождается полегание злаковых культур. При избыточном увлажнении рост растений ускоряется, междоузлия вытягиваются, а образование механической ткани отстает, поэтому прочность стебля снижается.

Интенсивность полегания определяется в баллах по результатам визуального наблюдения за посевами.

Повышение устойчивости растений к переувлажнению.

В условиях затопления при отсутствии в почве кислорода растения некоторых видов и сортов способны переносить электроны на другие акцепторы (нитраты, а также соединения, имеющие двойные связи — жирные кислоты, каротиноиды).

Благодаря этому при недостатке или отсутствии кислорода поддерживается жизнедеятельность растений. Подкормки таких культур нитратными удобрениями продлевают их жизнедеятельность в условиях переувлажнения и затопления. Устойчивость хлебных злаков к избытку воды в почве повышает также замачивание семян в растворе сульфата марганца (0,1 %), что способствует развитию генеративных органов, формированию зерновок в колосьях, а также в растворах хлорхолинхлорида или никотиновой кислоты.

Оценка интенсивности полегания растений

Интенсивность полегания Оценка, балл
Очень сильная. Стебли практически лежат на земле. Механизированная уборка даже при проходе комбайна в одном направлении без значительных потерь урожая невозможна. 1
Сильная. Стебли сильно наклонены. Механизированная уборка возможна только в одном направлении (против направления полегания) с приспособлением для уборки полеглых хлебов. 2
Средняя. Стебли сильно наклонены. Механизированная уборка возможна при наличии специальных приспособлений для уборки полеглых посевов, но при этом возможны потери урожая. 3
Слабая. Стебли наклонены в слабой степени, как правило, местами. При механизированной уборке затруднения невелики, и потери урожая несрезанными колосьями не бывает. 4
Полегания нет. Посевы неполеглые. 5

Для предупреждения полегания растений необходимо предпринимать следующие меры: соблюдение оптимальных норм высева семян и недопущение загущения посевов, соблюдение норм внесения азотных удобрений и недопущение перекорма азотом, соблюдение норм полива для культур, возделываемых в условиях орошения.

Для предотвращения полегания растений высокорослых сортов зерновых культур рекомендуется использовать ретарданты, например, хлорхолинхлорид (ССС) и его аналоги. Обычно обработку зерновых культур проводят в начале выхода в трубку. Эти соединения замедляют рост стебля, способствуют накоплению целлюлозы и лигнина, утолщению клеточной стенки. В результате утолщается стебель и повышается его механическая прочность.

Источник: www.activestudy.info


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.