Растения одного вида сходства и различия


Высокоорганизованные растения и животные настолько сильно различаются морфологически, что сама постановка вопроса о сходстве и различиях этих организмов, на первый взгляд, кажется странной. Однако, если мы имеем дело с организмами, стоящими на низких уровнях эволюционного развития, то определение их принадлежности к царству животных или царству растений подчас затруднительно. Коралловые полипы и пресноводные губки внешне больше похожи на растения, чем на животных, а среди одноклеточных водорослей немало организмов, напоминающих простейших животных. Сходство с животными обнаруживается в строении и поведении специализированных клеток — зооспор, обеспечивающих размножение ряда растений. И все же растения обладают рядом признаков, хорошо отличающих их от представителей животного мира.


1. Из цитологических особенностей важное значение имеет наличие у растений твердой углеводной оболочки — продукта жизнедеятельности протопласта. Между оболочками соседних клеток находится так называемая клеточная, или межклеточная пластинка, состоящая из цементирующих клетки пектиновых веществ.

Клетки животных, как правило, не имеют оболочек, их поверхностные мембраны — плазмалеммы — непосредственно контактируют с другими клетками или с внешней средой. Однако различия между растениями и животными по этому признаку не абсолютны, так как некоторые клетки животных имеют образования, аналогичные клеточным оболочкам растений.

Внутренний слой плазмалеммы состоит из белков, а наружный — практически у всех клеток животных представлен гликокаликсом — гидрофильным слоем, состоящим из полисахаридов, связанных с белками. Он играет роль соединительного слоя между плазмалеммами соседних клеток и аналогичен клеточной пластинке растений. Гликокаликс иногда развит настолько сильно, что образует вокруг плазмалеммы волокнистый чехол, имитирующий оболочку растительной клетки. Примером таких клеток могут служить клетки эпителия кишечника. С другой стороны, не все клетки растений имеют оболочки. 3ооспоры некоторых водорослей в процессе развития их теряют.


2. Существование любых организмов невозможно без поступления в них питательных веществ. Если животные могут активно заглатывать пищу, то растения получают многие вещества, прежде всего минеральные, только в виде водных растворов, беспрепятственно проходящих через оболочки. Плазмалемма, обладающая избирательной проницаемостью, часть растворенных веществ задерживает, остальные проходят внутрь клетки. Естественно, чем больше поверхность поглощения веществ, тем лучше питание растений. Увеличение площади питания достигается не только увеличением общих размеров растения, а, главным образом, их сильным расчленением.

3. Растениям свойственна способность к неограниченному или очень продолжительному верхушечному росту, приводящему к нарастанию одних частей на другие. Эту повторяемость однородных участков вдоль продольной оси называют метамерией (от греч. meta — после и meros — часть, доля). Многочисленные метамеры (или фитомеры) образуют у растений линейные или сильно разветвленные системы, определяющие специфичность их внешнего вида, но метамерия хорошо выражена только у высокоорганизованных растений.

Метамерия свойственна и животным, у которых она обусловлена разными причинами и возникает разными способами. У ленточных червей, например, она способствует их адаптации к эндопаразитизму и увеличению эффективности размножения, так как каждый членик тела имеет половые органы. У высших животных она может быть связана с упорядочением внутренней организации, интенсификацией присущих им функций или совершенствованием механизмов движения, например, перистальтические движения кишечника способствуют волнообразным изгибам тела при ползании и плавании.


4. Необходимость поглощения минеральных веществ требует закрепления растений на определенном месте, то есть их неподвижности. Конечно, из этого правила есть исключения. Среди зеленых водорослей много подвижных форм, их движения осуществляются с помощью жгутиков; подвижны зооспоры, гаметы, главным образом, мужские. Среди водных растений много плавающих форм, которые пассивно перемещаются течением воды. Рост подземных или стелющихся по земле длинных побегов, способствующий освоению растениями новых территорий, можно рассматривать как проявление активного движения.

В то же время среди животных встречаются организмы, ведущие прикрепленный к субстрату образ жизни, — например, гидра, полипы, губки.

Растениям свойственны также медленные движения, вызываемые разными раздражителями, — тропизмы, настии, нутации. По своей природе они существенно отличаются от движений животных, обусловленных мышечными сокращениями, регулируемыми нервной системой и сопровождаемыми потреблением энергии, поставщиком которой служит АТФ.

Тропизмы (от греч. trdpos — поворот, направление) проявляются в изменении ориентации органов растений в ответ на одностороннее действие факторов внешней среды: света (фототропизм), влажности (гидротропизм), химических раздражителей (хемотропизм), сил гравитации (геотропизм) и т.п.


Считают, что под влиянием этих факторов в тканях растений возникает электрофизиологическая поляризация, и появляющаяся разность потенциалов обусловливает перемещение в определенном направлении ауксина — гормона, активизирующего рост.

Тропизмы широко распространены в природе. Так, корни большинства растений растут по направлению к наиболее влажным почвенным горизонтам; листья растений, выращиваемых на подоконниках, всегда обращены к свету; раскрытые корзинки подсолнечника медленно поворачиваются вслед за солнцем (гелиотропизм).

Настии (от греч. nastos — уплотненный) — более быстрые движения, чем тропизмы, вызываемые диффузно действующими факторами: сменой температуры, изменением влажности, освещенности.

Они свойственны дорзовентральным органам и определяются разными темпами роста их верхней и нижней сторон, а также тургорными явлениями.

С настиями связаны суточные ритмы открывания и закрывания цветков и соцветий. Так, корзинки козлобородника, открытые рано утром, обычно к 10-11 часам закрываются; цветки белой кувшинки открыты только днем. Это вызвано изменениями температуры и влажности в течение суток.


У широко распространенной в хвойных лесах кислицы тройчатые листья расположены в горизонтальной плоскости только на рассеянном свету, но если на них попадают солнечные лучи, они быстро складываются «зонтиком ». У мимозы стыдливой даже при легком прикосновении складываются листочки и поникают черешочки сложных перистых листьев.

Настии обеспечивают не только защиту органов, как видно из этих примеров, они могут иметь и важное адаптивное значение. Открывание цветков табака вечером связано с их опылением ночными насекомыми. У насекомоядного растения росянки настические движения волосков листовой пластинки, на которой находится насекомое, способствуют добыванию азотистой пищи.

Нутации (от лат. nutatio — колебание, качание) — круговые или колебательные движения органов растений.

Круговые нутации происходят вследствие упорядоченных, идущих по кругу, местных ускорений роста клеток в зоне растяжения, стимулируемых, по-видимому, гормонами. Нутации хорошо выражены у вьюшихся побегов и усиков цепляющихся растений. У прекративших рост листьев и прилистников нутации происходят в результате последовательных изменений тургора в клетках листовых сочленений.

Из изложенного ясно, что ни один из описанных типов медленных движений растений не имеет ничего общего с движениями животных. Все эти движения связаны с. роцессами роста и осмотическими явлениями. Обеспечивая оптимальную ориентацию органов, они способствуют наиболее эффективному использованию растениями факторов питания и осуществляют их защиту от неблагоприятных внешних воздействий.


5. С прикрепленным образом жизни связаны и особенности расселения растений, создающие возможность расширения ареала вида. Для этого служат диаспоры (от греч. diaspord — рассеивание, разбрасывание) — части разной морфологической природы, естественным путем отделившиеся от растения. Диаспоры могут быть вегетативными (клубни, корневища, луковицы, выводковые почки) и генеративными: споры, семена, плоды. Попав в благоприятные условия, диаспоры дают начало новым растениям.

В отличие от растений животные расселяются по достижении определенного возраста, хотя есть и исключения. Например, расселение гидроидных полипов, ведущих прикрепленный образ жизни, осуществляется на стадии личинок.

6. Самое главное отличие растений от животных — их автотрофность: способность в результате фотосинтеза создавать органические вещества из углекислого газа и воды. Для осуществления фотосинтеза необходим пигмент — хлорофилл, который содержат хлорофилловые зерна — хлоропласты. Наличие пластид гораздо больше, чем наличие оболочки, определяет уникальность строения растительной клетки.

Растения — единственный на нашей планете источник синтеза органических веществ, потребляемых гетеротрофными организмами.
не все растения способны к фотосинтезу. Растения-паразиты — повилика, заразиха, Петров крест, раффлезия и др. питаются за счет растения-хозяина, а растения-сапротрофы, например, гнездовка, — используют для питания вещества, образующиеся при разложении мертвых остатков растений и других организмов. Следовательно, они, как и животные, гетеротрофы, хлорофилла у них нет.

Наряду с синтезирующими клетками в растениях много и гетеротрофных клеток, в которые поступают уже готовые органические вещества. Эти клетки сосредоточены в глубоких слоях корней и стеблей. Из пластид они содержат бесцветные пластиды — лейкопласты (от греч. leucos — белый), служащие для депонирования запасных веществ.

При сравнении растений и животных по способу питания главное внимание должно быть уделено не гетеротрофности, широко распространенной в природе, а автотрофности, свойственной исключительно растениям. «Жизнь растения представляет собой постоянное превращение энергии солнечного луча в химические напряжения; жизнь животного, наоборот, представляет превращение химического напряжения в теплоту и движение. В одном заводится пружина, которая спускается в другом».

Источник: zen.yandex.ru


Каждый вид имеет свойственные только ему морфологические при­знаки, которыми он отличается от других видов. Морфологический кри­терий указывает на сходство строения организмов одного вида. Для срав­нения можно взять комнатные растения: традесканция (зебристая, обык­новенная), бегония (королевская, вечноцветущая).

Выяснить отличия между растениями одного рода разных видов по морфологическому критерию можно на гербарных материалах видов: паслен (черный, красный) крапива (двудомная, жалкая), подорожник (большой, средний, ланцетовидный) клевер (ползучий, луговой) и т.д.

Для того, чтобы выяснить отличия между растениями разных видов одного рода по морфологическому критерию, необходимо сравнить рас­тения по таким признакам:

— корень: а) мочковатый; б) стержневой;

— стебель: а) разновидность по направлению роста (прямостоячий, ползучий, вьющийся, цепляющийся); б) по твердости (травянистый, деревянистый); в) окраска; г) опушенность.

— листья: а) тип листорасположения (поочередное или спиральное, супротивное, мутовчатое или кольчатое); б) простые или сложные (трой­чатые, сложнопальчатые); в) жилкование (параллельное, дуговое, сетча­тое);

— цветок: а) окраска; б) величина; в) тип соцветия, формула цветка;

— плод: боб, стручок, зерновка, ягода, коробочка и т.д.

Как пример, покажем морфологические особенности клевера ползу­чего и клевера лугового (род Клевер, семейство Бобовые).


Морфологи­ческие при­знаки Клевер ползучий Клевер луговой
1. Корень Корневище с клубеньками Корневище с клубеньками
2. Стебель   Стелющийся с ползучими побегами высотой 8-30 см, травянистый Прямостоячий, высотой 40-70 см, травянистый
3. Листья Мелкие, тройчатые, на длинных черешках, сетча­тое жилкование, пооче­редное размещение на побеге Тройчатые с широкояйце­видными или продолгова­тыми листьями с прилист­никами, размещение ли­стьев поочередное, жилко­вание сетчатое
4. Цветы Соцветие — головка, бело­го (реже розового) цвета, цветки мелкие. Формула цветка Ч(5)Л1,2(2)Т(5+4)+1П1. Цветки размещены поодиночно в соцветии на длин­ных цветоножках Соцветие — головка, крас­ного цвета, цветки мелкие на короткой цветоножке. Формула цветка такая же, как у клевера ползучего
5. Плод Мелкие бобы Яйцевидные бобы

Источник: studopedia.ru


Лабораторная работа № 1

«Описание особей вида по морфологическому критерию».

Цель: обеспечить усвоение учащимися понятия морфологичес­кого критерия вида, закрепить умение составлять описательную характеристику растений.

Оборудование: живые растения или гербарные мате­риалы растений разных видов.

Ход работы

1. Рассмотрите растения двух видов, запишите их названия, составьте морфологическую характеристику растений каждого вида, т. е. опишите особенности их внешнего строения (особенности листьев, стеблей, корней, цветков, плодов).

2. Сравните растения двух видов, выявите черты сходства и раз­личия. Чем объясняются сходства (различия) растений?

Растения одного вида сходства и различия

Лабораторная работа № 2

«Выявление изменчивости у особей одного вида»

Цель: сформировать понятие изменчивости организмов, продол­жить выработку умений наблюдать натуральные объекты, находить признаки изменчивости.

Оборудование: раздаточный материал, иллюстриру­ющий изменчивость организмов (растения 5—6 видов по 2—3 экзем­пляра каждого вида, наборы семян, плодов, листьев и др.).

Ход работы

1. Сравните 2—3 растения одного вида (или их отдельные орга­ны: листья, семена, плоды и др.), найдите признаки сходства в их строении. Объясните причины сходства особей одного вида.

2. Выявите у исследуемых растений признаки различия. Ответьте на вопрос: какие свойства организмов обусловливают раз­личия между особями одного и того же вида?

3. Раскройте значение этих свойств организмов для эволюции. Какие, на ваш взгляд, различия обусловлены наследственной измен­чивостью, какие — ненаследственной изменчивостью? Объясните, как могли возникнуть различия между особями одного вида.

Лабораторная работа № 3

«Выявление приспособлений у организмов к среде обитания»

Цель: научиться выявлять черты приспособленности организмов к среде обитания и устанавливать ее относительный характер.

Оборудование: гербарные образцы растений, комнатные растения, чучела или рисунки животных различных мест обитания.

Ход работы

1. Определите среду обитания растения или животного, предложенного вам для исследования. Выявите черты его приспособленности к среде оби­тания. Выявите относительный характер приспособленности. Полученные данные занесите в таблицу «Приспособленность организмов и её относи­тельность».

Приспособленность организмов и её относительность

Таблица 1 *

Название

вида

Среда обитания

Черты приспособленности к среде обитания

В чём выражается относительность

приспособленности

2. Изучив все предложенные организмы и заполнив таблицу, на осно­вании знаний о движущих силах эволюции объясните механизм возникно­вения приспособлений и запишите общий вывод.

Растения одного вида сходства и различия

Лабораторная работа № 4

«Выявление признаков сходства зародышей человека и других млекопитающих как доказательства их родства».

Цель: познакомиться с эмбриональными доказательствами эволюции органического мира.

Ход работы.

1.  Прочитать текст «Эмбриология» на стр.258-261, рассмотреть рис. 133 на стр.260.

2.  Выявить черты сходства зародышей человека и других позвоночных.

3.  Ответить на вопрос: о чем свидетельствуют сходства зародышей?

Лабораторная работа № 4

«Выявление признаков сходства зародышей человека и других млекопитающих как доказательства их родства».

Цель: познакомиться с эмбриональными доказательствами эволюции органического мира.

Ход работы.

4.  Прочитать текст «Эмбриология» на стр.258-261, рассмотреть рис. 133 на стр.260.

5.  Выявить черты сходства зародышей человека и других позвоночных.

6.  Ответить на вопрос: о чем свидетельствуют сходства зародышей?

Лабораторная работа № 5

«Анализ и оценка различных гипотез происхождения жизни»

Цель: знакомство с различными гипотезами происхождения жизни на Земле.

Ход работы.

Прочитать текст «Многообразие теорий возникновения жизни на Земле». Заполнить таблицу:

Теории и гипотезы

Сущность теории или гипотезы

Доказательства

3. Ответить на вопрос: Какой теории придерживаетесь вы лично? Почему?

«Многообразие теорий возникновения жизни на Земле».

1. Креационизм.

Согласно этой теории жизнь возникла в результате какого-то сверхъестественного события в прошлом. Ее при­держиваются последователи почти всех наиболее распро­страненных религиозных учений. Традиционное иудейско-христианское представление о сотворении мира, изложенное в Книге Бытия, вызывало и продолжает вызывать споры. Хотя все христиане призна­ют, что Библия — это завет Господа людям, по вопросу о длине «дня», упоминавшегося в Книге Бытия, суще­ствуют разногласия. Некоторые считают, что мир и все населяющие его организмы были созданы за 6 дней по 24 часа. Другие христиане не относятся к Библии как к научной РєРЅРёРіРµ и считают, что в Книге Бытия изложено в понятной для людей форме теологическое откровение о сотворении всех живых существ всемогущим Творцом. Процесс божественного сотворения мира мыслится как имевший место лишь однажды и потому недоступный для наблюдения. Этого достаточно, чтобы вынести всю концеп­цию божественного сотворения за рамки научного иссле­дования. Наука занимается только теми явлениями, кото­рые поддаются наблюдению, а потому она никогда не будет в состоянии ни доказать, ни опровергнуть эту концепцию.

2. Теория стационарного состояния.

Согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда способна поддерживать жизнь, а если и изменялась, то очень мало; виды тоже существовали всегда. Современные методы датирования дают все более вы­сокие оценки возраста Земли, что позволяет сторонни­кам теории стационарного состояния полагать, что Земля и виды существовали всегда. У каждого вида есть две возможности — либо изменение численности, либо вы­мирание. Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводят в качестве примера представителя кистеперых рыб — латимерию. По палеонтологическим данным, кистеперые вымерли около 70 млн. лет назад. Однако это заключение пришлось пересмотреть, когда в районе Мадагаскара были найдены живые представители кистеперых. Сторонники теории стационарного состояния утверждают, что, только изучая ныне живущие виды и сравнивая их с ископаемыми остатками, можно делать вывод о вымирании, да и то он может оказаться невер­ным. Внезапное появление какого-либо ископаемого вида в определенном пласте объясняется увеличением числен­ности его популяции или перемещением в места, благо­приятные для сохранения остатков.

3. Теория панспермии.

Эта теория не предлагает никакого механизма для объяснения первичного возникновения жизни, а выдвига­ет идею о ее внеземном происхождении. Поэтому ее нельзя считать теорией возникновения жизни как таковой; она просто переносит проблему в какое-то другое место во Вселенной. Гипотеза была выдвинута Ю. Либихом и Г. Рихтером в середине XIX века. Согласно гипотезе панспермии жизнь существует веч­но и переносится с планеты на планету метеоритами. Простейшие организмы или их споры («семена жизни»), попадая на новую планету и найдя здесь благоприятные условия, размножаются, давая начало эволюции от про­стейших форм к сложным. Возможно, что жизнь на Земле возникла из одной-едидственной колонии микроорганиз­мов, заброшенных из космоса. Для обоснования этой теории используются многократ­ные появления НЛО, наскальные изображения предме­тов, похожих на ракеты и «космонавтов», а также сооб­щения якобы о встречах с инопланетянами. При изучении материалов метеоритов и комет в них были обнаружены многие «предшественники живого» — такие вещества, как цианогены, синильная кислота и органические соедине­ния, которые, возможно, сыграли роль «семян», падав­ших на голую Землю. Сторонниками этой гипотезы были лауреаты Нобелев­ской премии Ф. Крик, Л. Оргел. Ф. Крик основывался на двух косвенных доказательствах:

• универсальности генетического кода;

• необходимости для нормального метаболизма всех живых существ молибдена, который встречается сей­час на планете крайне редко.

Но если жизнь возникла не на Земле, то как она воз­никла вне ее?

4. Физические гипотезы.

В основе физических гипотез лежит признание корен­ных отличий живого вещества от неживого. Рассмотрим гипотезу происхождения жизни, выдвинутую в 30-е годы XX века . Взгляды на сущность жизни привели Вернадского к выводу, что она появилась на Земле в форме биосферы. Коренные, фундаментальные особенности живого веще­ства требуют для его возникновения не химических, а физических процессов. Это должна быть своеобразная катастрофа, потрясение самих основ мироздания. В соответствии с распространенными в 30-х годах XX века гипотезами образования Луны в результате отрыва от Земли вещества, заполнявшего ранее Тихоокеанскую впадину, Вернадский предположил, что этот процесс мог вызвать то спиральное, вихревое движение земного веще­ства, которое больше не повторилось. Вернадский происхождение жизни осмысливал в тех же масштабах и интервалах времени, что и возникнове­ние самой Вселенной. При катастрофе условия внезапно меняются, и из протоматерии возникают живая и неживая материя.

5. Химические гипотезы.

Эта группа гипотез основывается на химической спе-дифике жизни и связывает ее происхождение с историей Земли. Рассмотрим некоторые гипотезы этой группы.

• У истоков истории химических гипотез стояли воззре­ния Э. Геккеля. Геккель считал, что сначала под дей­ствием химических и физических причин появились со­единения углерода. Эти вещества представляли собой не растворы, а взвеси маленьких комочков. Первичные комочки были способны к накоплению разных веществ и росту, за которым следовало деление. Затем появи­лась безъядерная клетка — исходная форма для всех живых существ на Земле.

• Определенным этапом в развитии химических гипотез абиогенеза стала концепция , выдвинутая им в 1922—1924 гг. XX века. Гипотеза Опарина пред­ставляет собой синтез дарвинизма с биохимией. По Опарину, наследственность стала следствием отбора. В гипотезе Опарина желаемое выдастся за действитель­ное. Сначала нее особенности жизни сводятся к обмену веществ, а затем его моделирование объявляется реше­нном загадки возникновения жизни.

Гипотеза Дж. Берпапа предполагает, что абиогенно воз­никшие небольшие молекулы нуклеиновых кислот из нескольких нуклеотидов могли сразу же соединяться с теми аминокислотами, которые они кодируют. В этой гипотезе первичная живая система видится как биохи­мическая жизнь без организмов, осуществляющая са­мовоспроизведение и обмен веществ. Организмы же, по Дж. Берналу, появляются вторично, в ходе обособ­ления отдельных участков такой биохимической жизни с помощью мембран.

• В качестве последней химической гипотезы возникнове­ния жизни на нашей планете рассмотрим гипотезу , выдвинутую в 1988 году. Согласно этой гипотезе, возникновение органических веществ пе­реносится в космическое пространство. В специфичес­ких условиях космоса идет синтез органических веществ (многочисленные орпанические вещества найдены в ме­теоритах — углеводы, углеводороды, азотистые осно­вания, аминокислоты, жирные кислоты и др.). Не ис­ключено, что в космических просторах могли образо­ваться нуклеотиды и даже молекулы ДНК. Однако, по мнению Войткевича, химическая эволюция на большин­стве планет Солнечной системы оказалась замороженной и продолжилась лишь на Земле, найдя там подхо­дящие условия. При охлаждении и конденсации газовой туманности на первичной Земле оказался весь набор органических соединений. В этих условиях живое веще­ство появилось и конденсировалось вокруг возникших абиогенно молекул ДНК. Итак, по гипотезе Войткевича первоначально появилась жизнь биохимическая, а в ходе ее эволюции появились отдельные организмы.

Лабораторная работа № 6

«Анализ и оценка различных гипотез происхождения человека»

Цель: познакомиться с различными гипотезами происхождения человека.

Ход работы.

1. Прочитать текст «Гипотезы происхождения человека» на стр.282-284.

2.Заполнить таблицу:

Ф. И.О. ученого или философа

Годы жизни

Представления о происхождении человека

Анаксимандр

Аристотель

К. Линней

И. Кант

А. Каверзнев

.

Ч. Дарвин.

3. Ответить на вопрос: Какие взгляды на происхождение человека вам ближе всего? Почему?

Лабораторная работа № 7

«Составление схем передачи веществ и энергии (цепей питания)»

Цель:

Ход работы.

1.Назовите организмы, которые должны быть на пропущенном месте следующих пищевых цепей:

Растения одного вида сходства и различия

Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн. Вывод: что отражают правила экологических пирамид?

Лабораторная работа № 8

«Исследование изменений в экосистемах на биологических моделях (аквариум)»

Цель: на примере искусственной экосистемы проследить изменения, происходящие под воздействием условий окружающей среды.

Ход работы.

Какие условия необходимо соблюдать при создании экосистемы аквариума. Опишите аквариум как экосистему, с указанием абиотических, биотических факторов среды, компонентов экосистемы (продуценты, консументы, редуценты). Составьте пищевые цепи в аквариуме. Какие изменения могут произойти в аквариуме, если:

    падают прямые солнечные лучи; в аквариуме обитает большое количество рыб.

5. Сделайте вывод о последствиях изменений в экосистемах.

Лабораторная работа № 9

«Сравнительная характеристика природных экосистем и агроэкосистем своей местности»

Цель: выявит черты сходства и различия естественных и искусственных экосистем.

Ход работы.

1. Прочитать текст «Агроценозы» на стр. 334-335.

2. Заполнить таблицу «Сравнение природных и искусственных экосистем»

Признаки сравнения

Способы регуляции

Видовое разнообразие

Плотность видовых популяций

Источники энергии и их использование

Продуктивность

Круговорот веществ и энергии

Способность выдерживать изменения среды

3. Сделать вывод о мерах, необходимых для создания устойчивых искусственных экосистем.

Лабораторная работа № 10

«Решение экологических задач»

Цель: создать условия для формирования умений решать простейшие экологические задачи.

Ход работы.

Решение задач.

Задача №1.

Зная правило десяти процентов, рассчитайте, сколько нужно травы, чтобы вырос один орел весом 5 кг (пищевая цепь: трава – заяц – орел). Условно принимайте, что на каждом трофическом уровне всегда поедаются только представители предыдущего уровня.

Задача №2.

На территории площадью 100 км2 ежегодно производили частичную рубку леса. На момент организации на этой территории заповедника было отмечено 50 лосей. Через 5 лет численность лосей увеличилась до 650 голов. Еще через 10 лет количество лосей уменьшилось до 90 голов и стабилизировалось в последующие годы на уровне 80-110 голов.

Определите численность и плотность поголовья лосей:

а) на момент создания заповедника;

б) через 5 лет после создания заповедника;

в) через 15 лет после создания заповедника.

Задача №3

Общее содержание углекислого газа в атмосфере Земли составляет 1100 млрд т. Установлено, что за один год растительность ассимилирует почти 1 млрд т углерода. Примерно столько же его выделяется в атмосферу. Определите, за сколько лет весь углерод атмосферы пройдет через организмы (атомный вес углерода –12, кислорода – 16).

Решение:

Подсчитаем, сколько тонн углерода содержится в атмосфере Земли. Составляем пропорцию: (молярная масса оксида углерода М(СО2) = 12 т + 16*2т = 44 т)

В 44 тоннах углекислого газа содержится 12 тонн углерода

В 1 тонн углекислого газа – Х тонн углерода.

44/1 = 12/Х;

Х = 1 *12/44;

Х = тонн

В современной атмосфере Земли находится тонн углерода.

Теперь необходимо выяснить, за какое время количество углерода "пройдет" через живые растения. Для этого необходимо полученный результат разделить на годовое потребление углерода растениями Земли.

Х = т/1 т в год

Х = 300 лет.

Таким образом, весь углерод атмосферы за 300 лет будет полностью ассимилирован растениями, побывает их составной частью и вновь попадет в атмосферу Земли.

Лабораторная работа № 11

«Выявление антропогенных изменений в экосистемах своей местности»

Цель: выявить антропогенные изменения в экосистемах местности и оценить их последствия.

Ход работы.

Рассмотреть карты-схемы территории с. Великомихайловка в разные годы. Выявить антропогенные изменения в экосистемах местности. Оценить последствия хозяйственной деятельности человека.

Растения одного вида сходства и различия

Рис.1 Карта-схема территории рек Плотва и

Холок после 1977 года.

Растения одного вида сходства и различия

Рис.2 Карта-схема территории рек Плотва и

Холок до 1977 года.

Лабораторная работа № 12

«Анализ и оценка последствий собственной деятельности в окружающей среде,

глобальных экологических проблем и путей их решения»

Цель: познакомить учащихся с последствиями хозяйственной деятельности человека в окружающей среде.

Ход работы.

Прочитать текст «Основные экологические проблемы современности» на стр.352-357. Заполнить таблицу:

Экологические проблемы

Причины

Пути решения экологических проблем

3. Ответить на вопрос: Какие экологические проблемы, по вашему мнению наиболее серьезные и требуют немедленного решения? Почему?

self. parent. Lego && self. parent. Lego. block[‘b-safe-panel’].init(window, document, 0)  

Источник: pandia.ru

1. Сравните 2—3 растения одного вида (или их отдельные органы: листья, семена, плоды и др.), найдите признаки сходства в их строении. Объясните причины сходства особей одного вида.

Растения одного вида сходства и различия

Различия между особями одного вида могли произойти из-за разных условий окружающей их среды, а также из-за разного ухода за растениями.

2. Выявите у исследуемых растений признаки различия. Ответьте на вопрос: какие свойства организмов обусловливают различия между особями одного и того же вида?

Признаки сходства: форма листа, корневая система, длинный стебель, сетчатое жилкование листьев. Сходство этих растений говорит о том, что у них одинаковые наследственные признаки. 
Признаки различия: ширина и длина листовой пластинки, длина стебля. Растения одного вида имеют различия, так как обладают индивидуальной изменчивостью. 

Оформление результатов: Сделайте записи в таблице по образцу.

Изучаемые объекты

Неизменяемые признаки

Изменяемые признаки

Одуванчик лекарственный

 3 экземпляра

Корневая система, стебель, форма листа, жилкование листьев, соцветия

Ширина и длина листовой пластинки, длина растения, размер соцветия

Листья клёна

Форма, жилкование

Ширина, длина

Делам ВЫВОД
1.Признаки сходства: форма листа, корневая система, длинный стебель, параллельное жилкование листьев. Сходство этих растений говорит о том, что у них одинаковые наследственные признаки.

2.Признаки различия: ширина и длина листовой пластинки, длина стебля. Растения одного вида имеют различия, так как обладают индивидуальной изменчивостью.

3.Благодаря наследственности организмы передают свои признаки из поколения в поколение. Изменчивость делится на наследственную, которая дает материал для естественного отбора и не наследственную, которая возникает из-за изменений факторов окружающей среды и помогает растению приспособиться к этим условиям.

4. Различия, которые обусловлены наследственной изменчивостью: форма цветка, форма листа. Различия, которые обусловлены не наследственной изменчивостью: ширина и длина листа, высота стебля.  Различия между особями одного вида могли произойти из-за разных условий окружающей их среды, а также из-за разного ухода за растениями.

Источник: www.soloby.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.